

Mapping of high-elevation alpine grassland communities based on hyperspectral UAV measurements

Levente Papp^{1,2}, Abraham Mejia-Aguilar², Ruth Sonnenschein², Rita Tonin³, Michael Loebmann³, Clemens Geitner⁴, Martin Rutzinger⁴, Andreas Mayr⁴ and Stefan Lang¹

- ¹ Department of Geoinformatics Z GIS, University of Salzburg, Salzburg, Austria
- ² EURAC Research, Bolzano, Italy
- ³ Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- ⁴ Department of Geography, University of Innsbruck, Innsbruck, Austria

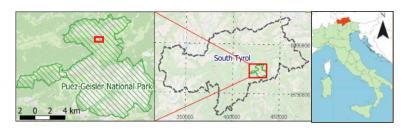
Objectives

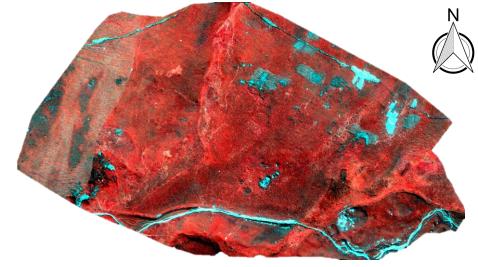
 Investigate and delineate the main lawn communities present in the area

 Define the dominant grassland species and determine the approximate coverage of them

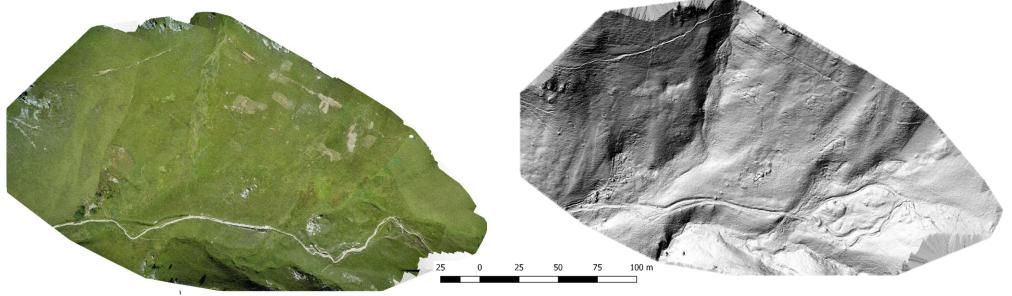
 Based on spectral signatures distinguish the main grassland communities

 Using remotely sensed datasets classify the different vegetation types in the area


Mapping the grassland communities based on high precision ground measurements and hyperspectral remotely sensed datasets

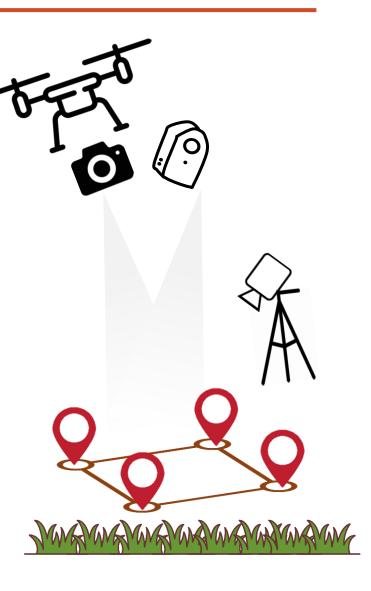


Study area


- Funes valley, in Puez-Geisler National Park, South Tyrol, Italy
- 2190-2300 m a.s.l.
 - → precipitous area
- Endangered by shallow erosion

Funes valley study area near-infrared composite (896 nm)

- Area: 5 ha
- Field trips:
 - → 23/08/2019
 - Botanical surveys
 - → 04/09/2019
 - UAV flights
 - Field measurements



Funes valley study area RGB composite

Funes valley study area digital elevation model

Measurements

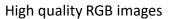
UAV flights

RGB image

Hyperspectral image: Rikola camera:

40 bands: 506-896 nm 5 cm spatial accuracy

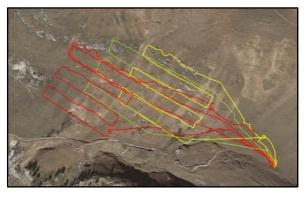
Field measurements (Quadrats) – 50x50 cm:



3 measurements with Spectroradiometer (Spectra Vista HR-1024i) from 1 meter high

Range: 340-2500 nm

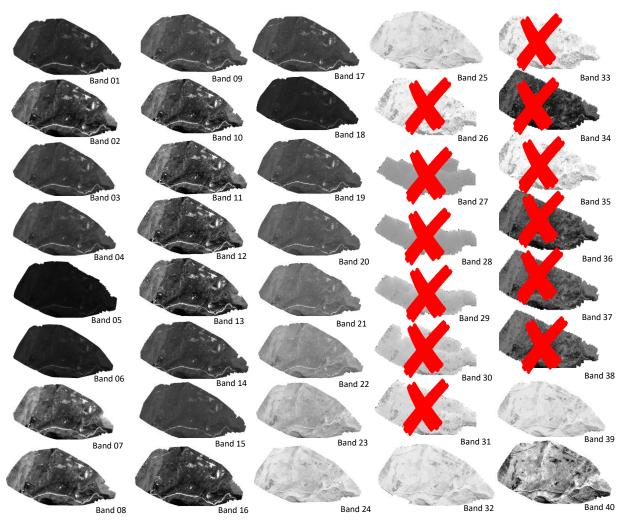
(+ Photos with spectroradiometer, for positioning)



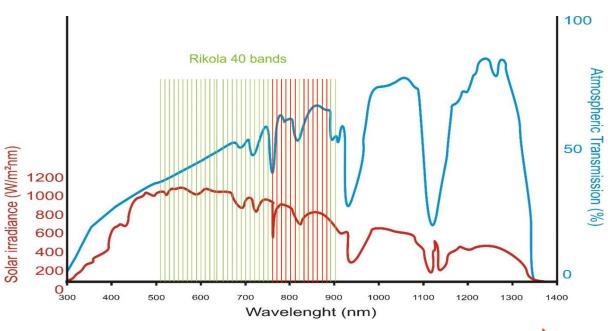
Hyperspectral images of quadrats

Sampled vegetation

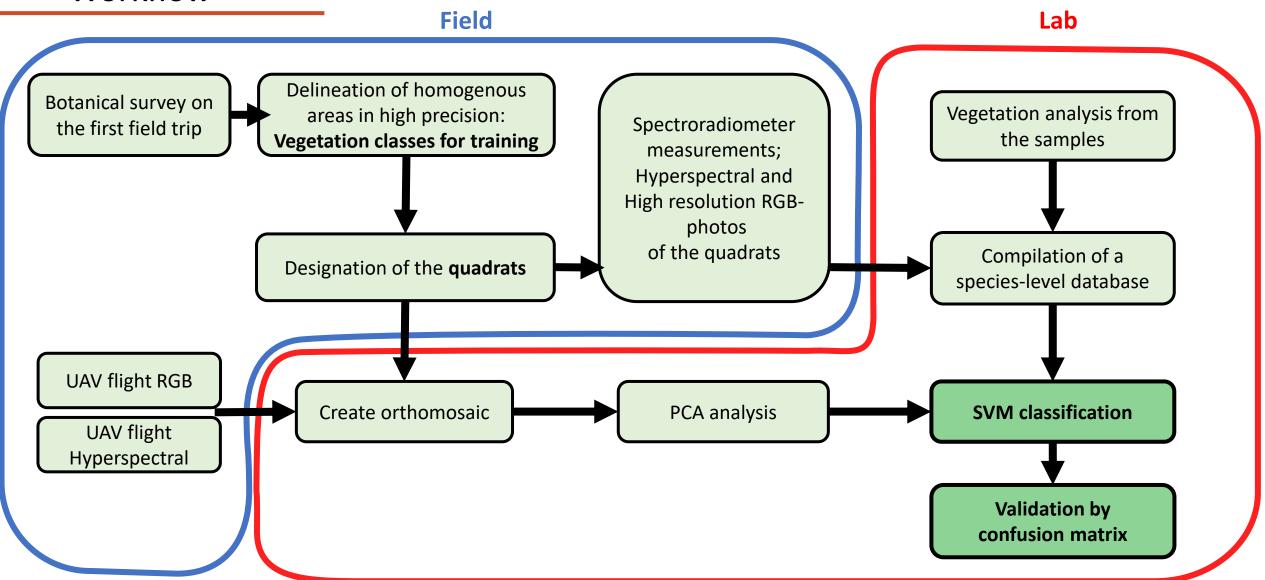
+ GNSS RTK GMPS measurements of the corner of quadrats



Measurements

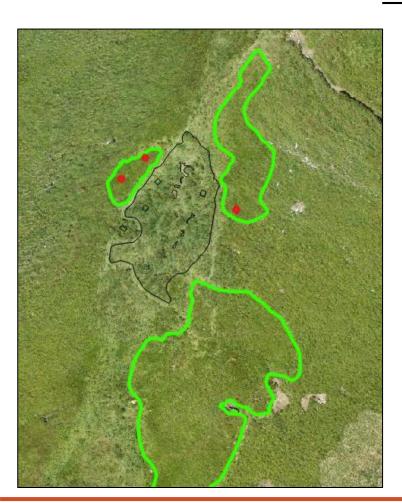

Hyperspectral UAV measurements

Excluded bands: (12)


Band 26 – 756,129 nm	Band 33 – 825,500 nm
Band 27 – 766,380 nm	Band 34 – 835,804 nm
Band 28 – 776,245 nm	Band 35 – 846,697 nm
Band 29 – 786,129 nm	Band 36 – 855,982 nm
Band 30 – 796,154 nm	Band 37 – 866,602 nm
Band 31 – 806,339 nm	Band 38 – 877.456 nm

28 bands remaining for the classification

Workflow

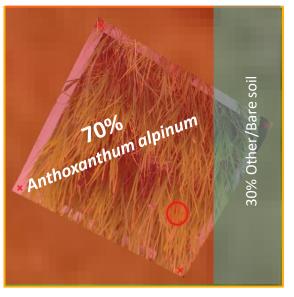

Defined classes Funes valley study area – defined vegetation classes Legend Quadrats Definied vegetation classes Class 01 – Anthoxanthum alpinum community Class 02 – Avenula pubescens & Festuca norica community Class 03 – Avenula pubescens & Triestum flavescens community Class 04 – Short grass 25 100 m Class 05 – Geranium sylvaticum community Created by Levente Papp, – EURAC Center for Sensing Solutions, 2020 – ETRS89/UTM zone N32

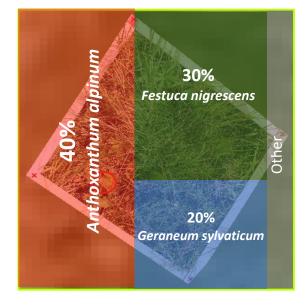
• Based on the botanical survey on the first field trip

Class 01 – Anthoxanthum alpinum community

A very bright green and dense grass, in the surveyed plots, it is really homogenous. The areas were clearly defined on the ground and on the orthomosaic too.

<u>Anthoxantum alpinum</u>	Grass
Phleum rhaeticum	Grass
Avenula pubescens	Grass
Festuca nigrescens	Grass
Geraneum sylvaticum	Forb
Knautia longifolia	Forb
Trollius europaeus	Forb
Achillea millefolium	Forb
Pulsatilla alpina	Forb
Carduus defloratus	Forb
Pimpinella major	Forb
Silene vulgaris	Forb
Carex sempervirens	Grass
Poa glauca	Grass
Hypericum maculatum	Forb

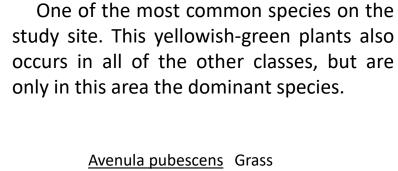


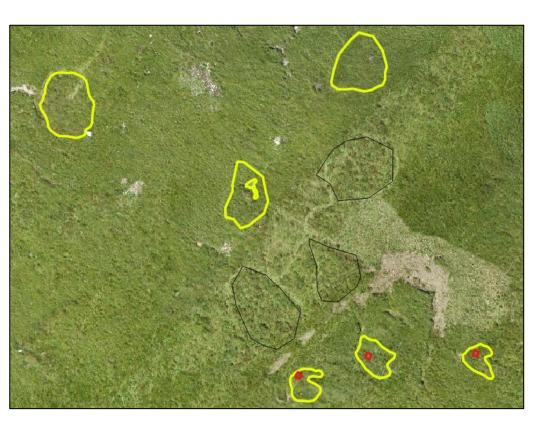


Class 01 – Anthoxanthum alpinum community

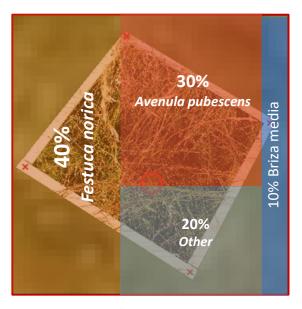
52.5 56.3 37.5 37.5 25.6 6.3 0.0 6.5 1 964.3 127.1.4 1570.6 108.5 2182.9 22.0

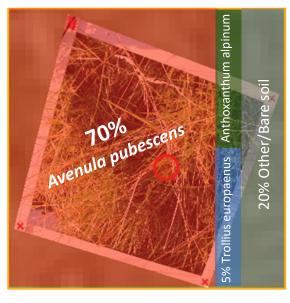
Spectral signals of the quadrats measured with the spectroradiometer

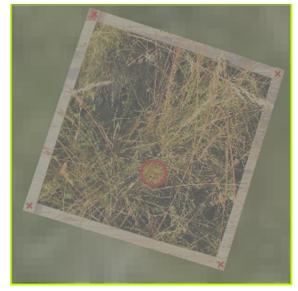

66% - Anthoxanthum alpinum

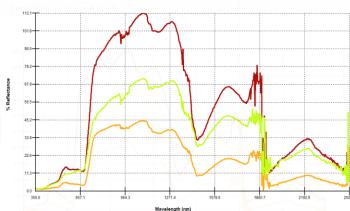

Phleum rhaeticum	Gras
Avenula pubescens	Gras
Festuca nigrescens	Gras
Geraneum sylvaticum	Forb
Knautia longifolia	Forb
Trollius europaeus	Forb
Achillea millefolium	Forb
Pulsatilla alpina	Forb
Carduus defloratus	Forb
Pimpinella major	Forb
Silene vulgaris	Forb
Carex sempervirens	Gras
Poa glauca	Gras
Hypericum maculatum	Forb

Class 02 – Avenula pubescens and Festuca norica community


Avenula pubescens	Grass
Festuca norica	Grass
Avenula praeusta	Grass
Sesleria varia	Grass
Scabiosa lucida	Forb
Trollius europaeus	Forb
Arnica montana	Forb
Trifolium pratense	Legume
Carduus defloratus	Forb
Leontodon hispidus	Forb
Horminum	
pyrenaicum	Forb
Achillea millefolium	Forb
Pulmonaria australis	Forb
Briza media	Grass

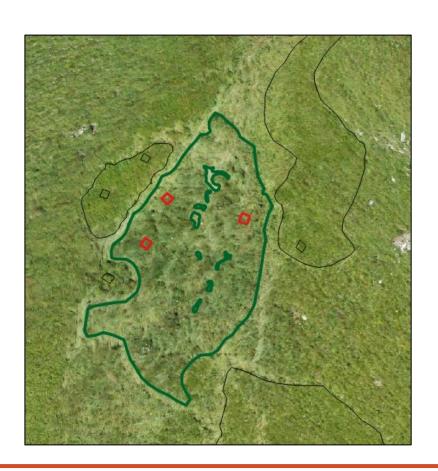





Class 02 – Avenula pubescens and Festuca norica community

No collected vegetation samples

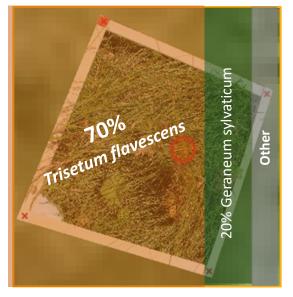
Spectral signals of the quadrats measured with the spectroradiometer

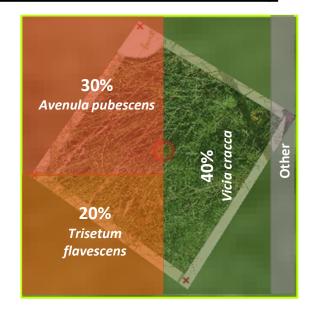

70% - Avenula pubescens & Festuca norica

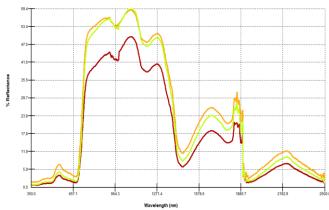
Avenula praeusta	Grass
Sesleria varia	Grass
Scabiosa lucida	Forb
Trollius europaeus	Forb
Arnica montana	Forb
Trifolium pratense	Legume
Carduus defloratus	Forb
Leontodon hispidus	Forb
Horminum	
pyrenaicum	Forb
Achillea millefolium	Forb
Pulmonaria australis	Forb
Briza media	Grass

<u>Class 03 – Avenula pubescens</u> <u>and Trisetum flavescens community</u>


This community mostly occurs in the humid valley of the area, it is slightly darker than its surroundings.


Trisetum flavescens	Grass
Avenula pubescens	Grass
Phleum rhaeticum	Grass
Achillea millefolium	Forb
Rumex alpestris	Forb
Geraneum sylvaticum	Forb
Knautia longifolia	Forb
Vicia cracca	Legume
Hypericum maculatum	Forb
Alchemilla hirsuta group	Forb
Trollius europaeus	Forb
Leontodon hispidus	Forb
Silene vulgaris	Forb
Pimpinella major	Forb
· ····p····c··a ····ajo·	FULD





<u>Class 03 – Avenula pubescens</u> and Trisetum flavescens community

Spectral signals of the quadrats measured with the spectroradiometer

56% - Avenula pubescens & Triestum flavescens

Phleum rhaeticum	Grass
Achillea millefolium	Forb
Rumex alpestris	Forb
Geraneum sylvaticum	Forb
Knautia longifolia	Forb
Vicia cracca	Legume
Hypericum maculatum	Forb
Alchemilla hirsuta	
group	Forb
Trollius europaeus	Forb
Leontodon hispidus	Forb
Silene vulgaris	Forb
Pimpinella major	Forb

Class 04 – Short grass

Originally, we defined this as an independent vegetation class, but after a more detailed survey, we found these areas are homogenous because of anthropogenic influences. – No recorded quadrats because of this.

Trisetum flavescens	Grass
Carex sempervirens	Grass
Sesleria varia	Grass
Carex caryophyllea	Grass
Luzula alpina	Grass
Phyteuma orbiculare	Forb
Carduus defloratus	Forb
Hieracium morisianum	Forb
Scabiosa sp	Forb
Gentiana anisodonta	Forb
Aster bellidiastrum	Forb
Horminum pyrenaicum	Forb
Anthyllis vulneraria	Legume
Pedicularis elongata	Forb
Festuca norica	Grass
Polygonum viviparum	Forb

<u>Class 05 – Geranium sylvaticum community</u>

Rusty coloured in this season (September)

– characteristic field pattern, occurs in a variety
of locations in the whole study area.

No recorded quadrats

Geraneum sylvaticum	Forb
Avenula pubescens	Grass
Festuca norica	Grass
Alchemilla group hirsutae	Forb
Trifolium pratense	Legume
Trollius europaeus	Forb
Sesleria varia	Forb
Phleum rhaeticum	Grass
Silene vulgaris	Forb
Leontodon hispidus	Forb
Rumex alpestris	Forb
Achillea millefolium	Forb
Ranunculus nemorosus	Forb
Pulsatilla alpina	Forb

Other defined classes

Modified and non-vegetation classes:

Sparse/replanted areas

In some areas they replanted the vegetation, spectrally close to the bare soil because it is not dense enough to cover it

Covered areas

Same, but covered with textile and cut-of grass (Class 4)

Wooden barriers

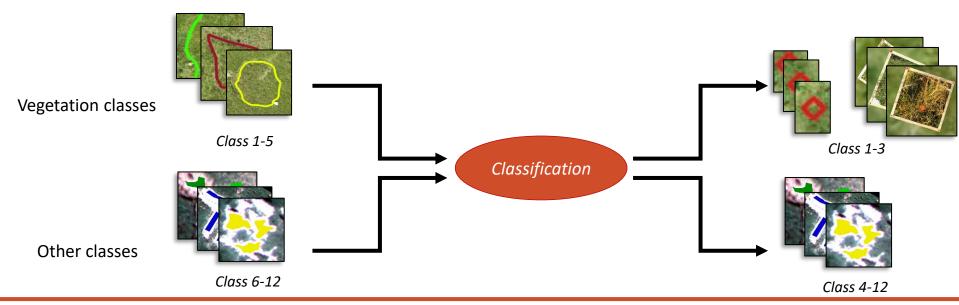
Near the replanted areas to stop the erosion

Drooped (or trampled) grass

The areas where traces from a field survey two weeks earlier that were still visible

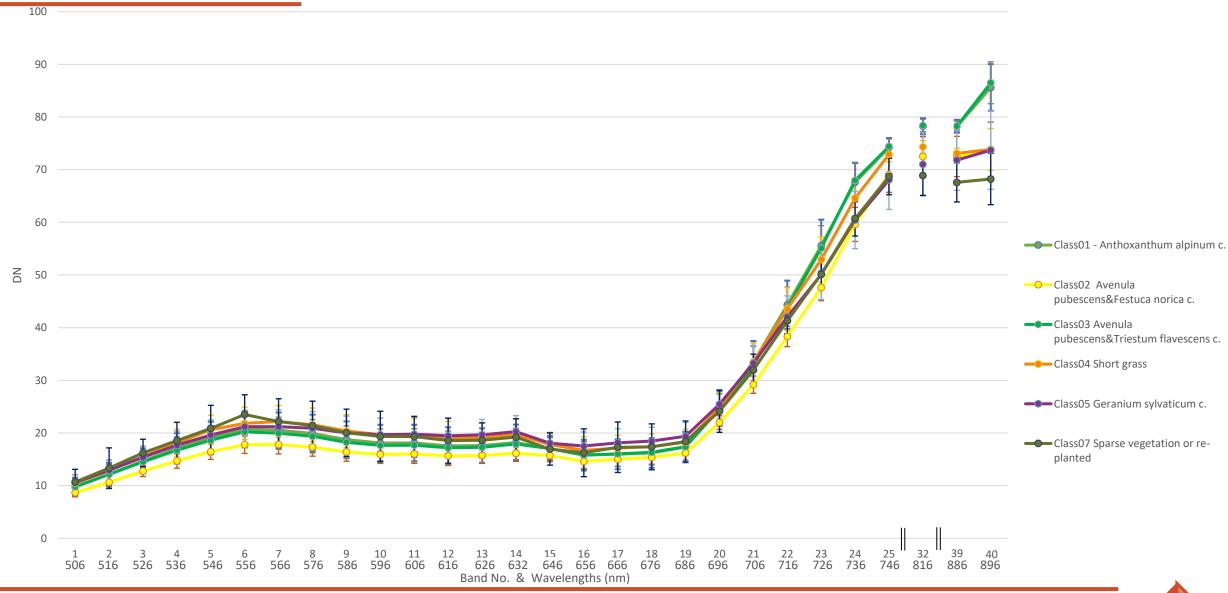
- Shadow
- Bare soil
- Bare rock

Σ 12 classes (5 grassland communities + 7 "others")

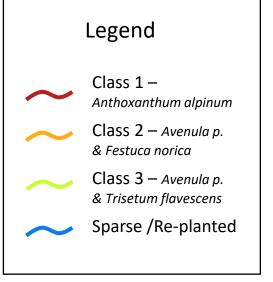

Classification

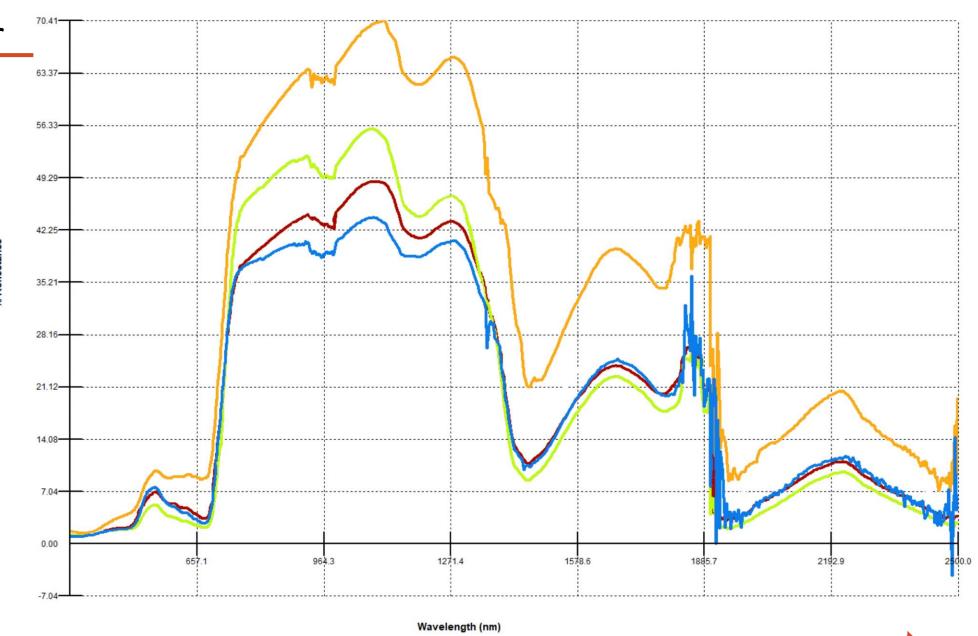
For training:

- Based on the botanical survey in the first field trip
- Smaller subsets of it based on the orthomosaic
- Delineated homogenous areas with high precision (GNSS RTK GPS)
- Non-vegetation classes based on orthomosaic – 2/3 for training

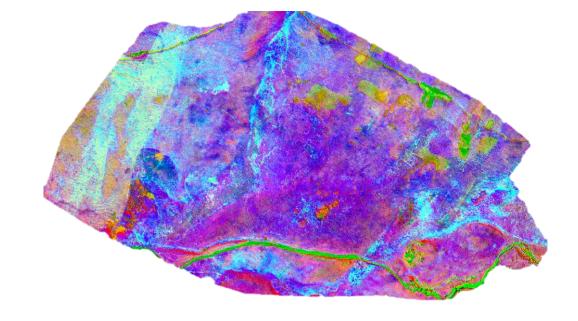

For validation:

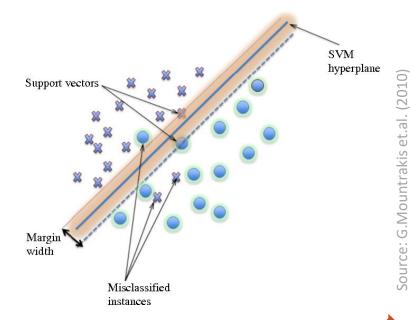
- 50x50 cm quadrats knowing the exact content of them
- Areas: approximately 350-400 pixels
- Corner points measured with high precision (GNSS RTK GPS)
- Non-vegetation classes based on orthomosaic – 1/3 for validation
- Validation with Confusion matrix




Challenges

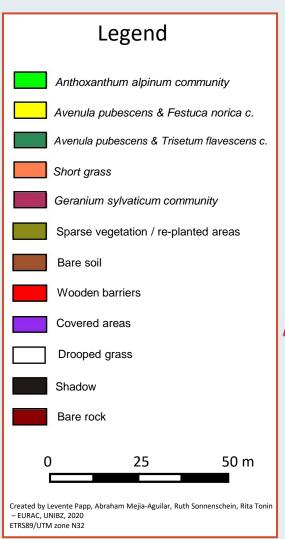
Spectroradiometer

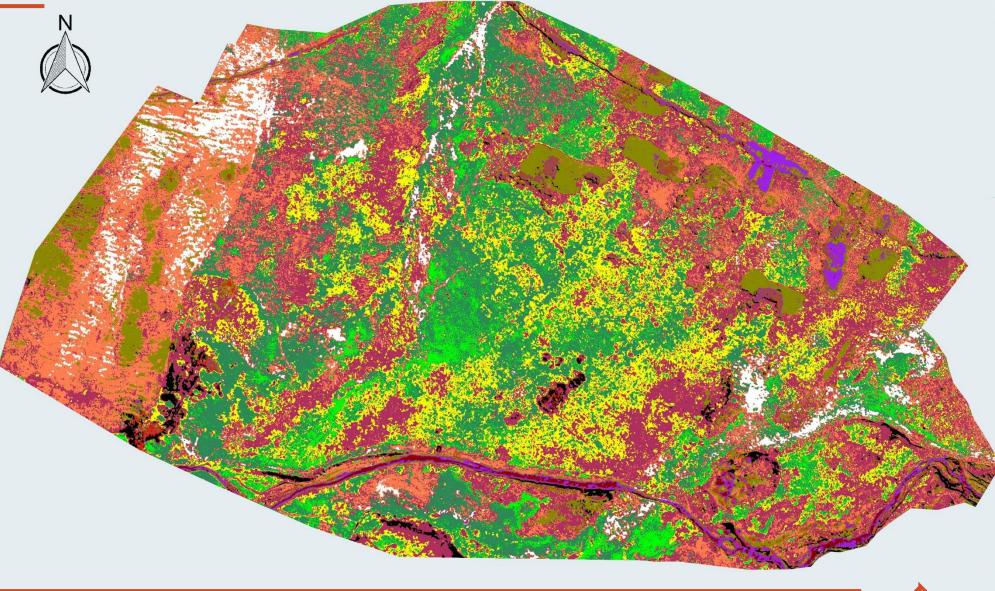


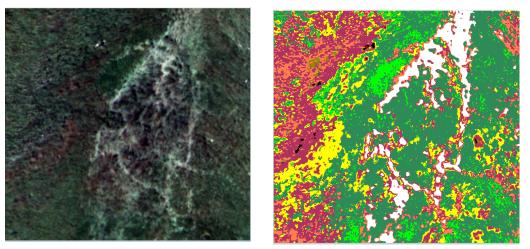

PCA – Principal Component Analysis

- Based on Eigenvalues we reduced the variables
- 28 bands reduced to
 6 bands which contains the majority of the information

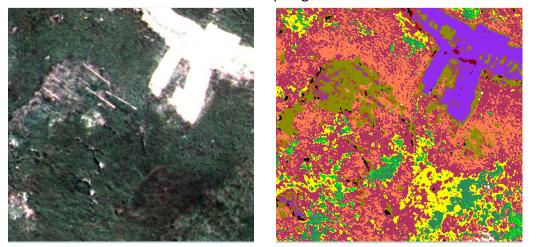
Support Vector Machine classification

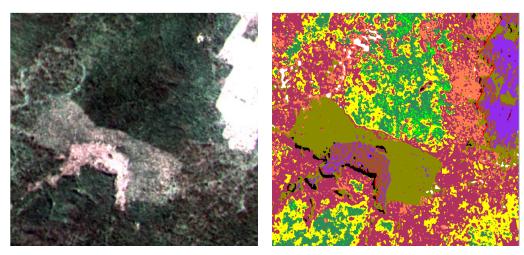

- A supervised learning method
- Try to find the proper hyperplanes in the spectral space between the classes
- Suitable for smaller datasets (e.g. not like ANN)
- We set the proper parameters based on one classification rule image (the probability of a given pixel belongs to that class)
- Used software: ENVI Classic 5.2

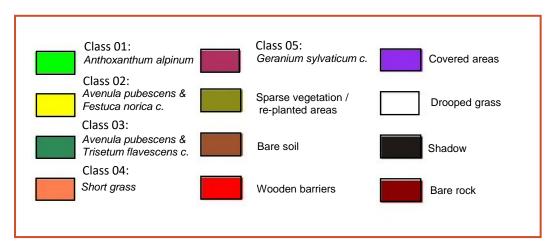



Result map

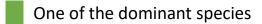
Support Vector Machine Classification of Funes Valley study area




Examples


Humid Valley with Class 03 – Avenula pubescens and Trisetum flavescens community and drooped grass

Shallow erosion areas (covered and replanted ones with the wooden barriers) – surrounded by Class 04: short grass and Class 05: Geranium sylvaticum


A shallow erosion area with sparsen vegetation surrounded by Class 05: Geranium sylvaticum and a combination of the two Avenula pubescens classes (Class 02 and Class 03)

Results

Classes:	01	02	03	04	05
Achillea millefolium					
Alchemilla hirsuta group					
Anthoxanthum alpinum	66%	<5%			
Anthyllis vulneraria					
Arnica montana					
Aster bellidiastrum					
Avenula praeusta					
Avenula pubescens		50%	20%		
Briza media		<5%			
Carduus defloratus					
Carex caryophyllea					
Carex sempervirens					
Chaerophyllum hirsutum					
Festuca nigrescens	10%				
Festuca norica		20%			
Gentiana anisodonta					
Geraneum sylvaticum	7%		7%		
Hieracium morisianum					
Horminum pyrenaicum					
Hypericum maculatum					

Knautia longifolia			
Leontodon hispidus			
Luzula alpina			
Pedicularis elongata			
Phleum rhaeticum			
Phyteuma orbiculare			
Pimpinella major		7%	
Poa glauca			
Polygonum viviparum			
Pulmonaria australis			
Pulsatilla alpina			
Ranunculus nemorosus			
Rumex alpestris			
Scabiosa lucida			
Scabiosa sp			
Sesleria varia			
Silene vulgaris			
Trifolium pratense			
Trisetum flavescens		36%	
Trollius europaeus	<5%		
Vicia cracca		20%	

Occurs in the area but in minor

Does not occur in the area

Percentage coverage inside the community (only if it is covered by a quadrat)

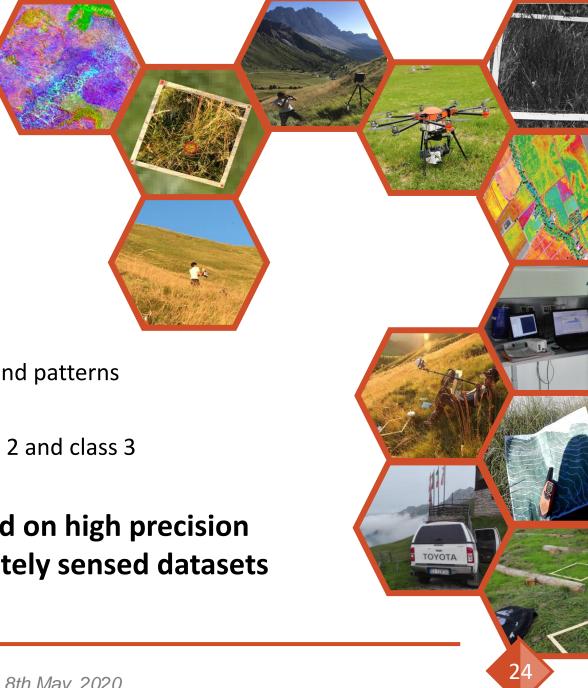
Validation

- The classified map confusion matrix & the field expert
- Overrepresented/false positive results?
 - Small misclassification in case of class 2/3
 - Reasons: Species overlapping Avenula pubescens but they are two different communities
 - For the community of class 3: Avenula pubescens & Trisetum flavescens the time of the field measurements (September) quite late. The plants are starting yellowing during September and become similar to class 2.
- Geranium sylvaticum (Class 05)

 beside of Avenula pubescens Is the most common species, this community surrounding the other classes
- Class 4 (Short grass): Surrounding the shallow erosion plots and in the western cultivated areas - combined with drooped grass, classified as our result because the slope & anthropogenic influence

Overall Accuracy = (2001/2648) 75.5665% Kappa Coefficient = 0.6785

Confusion matrix - Ground truth (percent)						
	Class 01	Class 02	Class 03	Class 04	Class 05	Total
Class01	61.61	0	0.78	0	0	7.33
Class02	0	32.19	0	0	2.88	5.29
Class03	38.39	35.36	89.3	0	0	22.47
Class04	0	1.06	7.83	80.15	3.69	30.97
Class05	0	31.4	2.09	19.85	93.43	33.95
Total	100	100	100	100	100	100



Discussion

- The major communities were delineated and investigated in two different scales
- A database was built up on species-level for the classes/communities
 - The dominant species and their coverage has been defined
- Hyperspectral aerial image was created and classified with high accuracy
- The classification represents the main field conditions and patterns
- Smaller misclassification on a minor area between class 2 and class 3 caused by the late investigation date

The grassland communities were mapped based on high precision ground measurements and hyperspectral remotely sensed datasets

Thank you for your attention!

Mapping of high-elevation alpine grassland communities based on hyperspectral UAV measurements

The research leading to these results has received funding from the Province of Bolzano under the Research and Innovation action, L§14 and from the European Regional Development Fund, Operational Program Investment for growth and jobs ERDF 2014-2020 under Project number ERDF1094, Data Platform and Sensing Technology for Environmental Sensing LAB-DPS4ESLAB.

